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Summary-For a ce r t a in  class of multivariate random processes, 
ca l led  wide -sense Markov processes, the  minimum mean-square e r r o r  
l i n e a r  predict ion and estimation problem i s  solved i n  terms of ex- 
p l i c i t  formulas. These continue t o  apply when only irregular Sam- 
ples  of the process are available,  o r  the optimum f i l t e r  i s  con- 
s t ra ined  t o  have f i n i t e  memory. A complete character izat ion of 

Markov i f  and only i f  i t s  covariance matrix satisfies a specif ied 
these processes i s  obtained; a process i s  shown t o  be wide-sense 

funct ional  equation. The output of a system described by a (pos- 
s i b l y  t i m e  -varying) matrix-vector equation forced by multivariate 
white noise i s  shown t o  be wide-sense Markov. Prediction and e s t i -  
mation optima are computed f o r  the output of such a system. 
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Increased i n t e r e s t  has recent ly  been focused on l i n e a r  multivariate sys- 
t e m s  characterized by an input-output re la t ionship  

\ t  
y j ( t )  = 1 Wjk(t,T)Xk(T)dT j=1,2,. . . ,n , 

k =1 

where the inputs a re  x l ( t ) ,  +( t),  ...,%( t )  and the outputs a re  s imi la r ly  
indexed y’s .  
which may be nonstationary. 

The input components x ( t )  are of ten  second-order processes, j 

If the system i s  t o  be designed as an optimum predictor  i n  the sense of 
minimizing the s t a t i s t i c a l  expectation ( indicated by prefixing E )  given by 
E & ( [ x . ( t i a ) - y . ( t ) I 2 ] ,  the n2 weighting functions W i j  a re  given as the  

J 
so lu t ion  of n2 l i n e a r  simultaneous in t eg ra l  equations of the time -varying 
Wiener-Hopf t y p .  The complexity of t h i s  task  i s  such tha t  general solu- 
t i ons  have not been obtained, nor i s  there much hope of securing solutions 
i n  the  future .  There are, however, a number of special  assumptions under 
which solut ions are known t o  e x i s t .  Although many s i tua t ions  of prac t ica l  
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importance s a t i s f y  these assumptions, the optimization procedures required are 
so d i f f i c u l t  as t o  discourage ac tua l  computation [l] (21 [ 3 ] .  

Perhaps the outstanding feature  of the theory t o  be presented i n  t h i s  
Solutions t o  predict ion problems are pre- 
The technique i s  e a s i l y  extended t o  the 

r: \ paper i s  i t s  ease of application. 
sented e x p l i c i t l y  i n  closed form. 
optimum (minimum mean-square) estimator f o r  funct ionals  on x ( t )  provided by 
unrealizable operations of ce r t a in  types. The procedure may be applied when 
only (possibly i r r egu la r ly  spaced) samples of a r b i t r a r y  width are avai lable .  
A fur ther  extension t o  a generalized mean-square e r r o r  c r i t e r i o n  i s  immediate. 

While our theory i s  applicable only t o  a ce r t a in  c l a s s  of (time-varying, 

k r e o v e r ,  we derive a c r i t e r i o n  whereby t h i s  c l a s s  of 
possibly complex) random processes, t h i s  c l a s s  includes many problems of 
engineering in t e re s t .  
processes may be e a s i l y  ident i f ied .  
components solve the  s e t s  of simultaneous d i f f e r e n t i a l  equations 

Included, f o r  example, i s  the x ( t )  whose 

where the %(t) are uncorrelated white-noise processes (compare [3 3). 

1 

0 
-b  
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I. PRELIMINARLES 

A multivariate second-order process x ( t )  consis ts  of n component proc- 
esses x , ( t ) , x , ( t ) ,  . . .,%(t), each of which i s  i t s e l f  a (complex) process of 
f i n i t e  mean square. It will be convenient throughout t o  regard x ( t )  as the 
matrix 

0 

0 

. . .  
0 

o....o 

0.. . .o 

0. .  . .o 1 . . . .  ( 3 )  

and fi(t) as the complex conjugate transpose of x ( t ) .  

The expectation of a matrix (denoted by pref ixing E )  i s  formed of the 
expectation of i t s  elements. The same convention appl ies  t o  other  l i n e a r  - 

operations on a matrix; f o r  example, the derivative of A = [ a i j ( t )  1 i s  
A = [; t i j( t)] .  

F l  dk4-h 



The correlat ion of x ( s )  and x ( t )  i s  designated P ( s , t ) ,  and i s  given by 

which i s  simply the matrix whose i j  element i s  E [ x i ( s ) x j ( t ) ] .  
uc t  

The inner prod- 
of x(s) and x ( t )  i s  then defined as the t race  of i t s  correlat ion,  viz .  

i 

The inner product i s  a l so  defined fo r  random variables  obtained from l i n e a r  
matrix operations on x ( t )  . 
product 

Thus , if y = A(s)x( s )  and z = B ( t ) x ( t ) ,  the inner 

The inner product leads a l so  t o  a norm; thus the norm Ilx(t) 11 of x ( t )  i s  
given according t o  the def in i t ion  

The norm of z ( t )  above i s  then seen t o  be I l z ( t ) @ r [ B ( t ) P ( t , t ) B * ( t ) ] .  

c 

Consider now a H i l b e r t  space H; it s h a l l  consis t  of a l l  matrices 
A ( t ) x ( t )  f o r  each t, providing the norm remains f i n i t e ,  of a l l  f i n i t e  l i n e a r  
combinations 

whose norm remains finite.’  
= x(t+CX) f o r  predictian1,and i f  y(t)EH i s  the ac tua l  output, the e r r o r  i s  
given by z ( t ) - y ( t ) .  
l og ica l  de f in i t i on  of the mean-square e r r o r  i s  the sum of the mean-squares 

c A(tk)x( tk) ,  and of a l l  l i m i t s  of such f i n i t e  combinations 
k 

I f  it i s  required t o  estimate z ( t ) E H  [z(t) 

Now the j t h  e r ro r  component i s  z j ( t ) - y j ( t ) ,  and a 

of these components. Therefore, the mean-square e r r o r  h 7g i s  

%he reader unfamiliar with Hilbert spaces i s  advised t o  consult [41. 
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so t h a t  the optimization problem i s  equivalent t o  m i n i m i z i n g  an H norm. 

Since z ( t )  is specif ied i n  the  problem statement, the optimization pro- 
cedure involves finding t h a t  "admissible" y ( t )  which minimizes (8). To be 

4 

precise,  y ( t )  i s  admissible i f  y(t)EM, where M i s  a subspace. 
i s  defined as follows: 
consider a l l  x ( t )  f o r  which t E T .  

sums 

a l so .  
times over which x ( t )  i s  avai lable  f o r  observation o r  as an input to a f i l -  
ter; it i s  the ''subspace of the past." 

A subspace 
l e t  T be a specif ied subset of the real l i ne ,  and 

All such x(t)EM, together with a l l  f i n i t e  
Final ly ,  a l l  l i m i t s  i n  norm of these sums belong t o  M 

.. 
A ( t k ) x ( t k )  . 

k 
If t represents the t i m e  of the  present, T = (sls< - t)  i s  the  set  of 

Two random variables,  say y and z, are sa id  t o  be orthogonal, y l z ,  i f  
(y ,z )  = 0. 
l e m  i s  indicated by 

That orthogonality is a concept cen t r a l  t o  the  optimization prob- 

Theorem I: 
a l l  elements of M i s  t h a t  z-y i s  orthogonal t o  every element i n  M, i .e . ,  t h a t  

A necessary and su f f i c i en t  condition t h a t  yeM minimize (8) over 

Such a yrM e x i s t s  and i s  unique. 

Proof: See [4], Sections 6 and 7. 

The requirement ( 9 )  is equivalent t o  T ( E  [(  z-y) f l ( t )A*( t )  1) = 0 f o r  
a r b i t r a r y  A ( t )  and a l l  teT.2 
implies tha t  ( 9 )  i s  s a t i s f i e d  i f  and only i f  the matrix 

In  par t icu lar ,  the a r b i t r a r y  nature of A ( t )  

Suppose now t h a t  it i s  desired t o  optimize with respect t o  a generalized 
mean-square e r ro r  c r i te r ion ,  t h a t  is ,  t o  minimize 

r 

over a l l  yEM, wi th  B an a r b i t r a r y  matrix having e n t r i e s  bjk.  
shown (see [ 5 ] ,  Theorem 1) t h a t  the same y€M which minimizes (8) a l so  mini- 
mizes  the generalized mean-square e r ror ,  (11). However, the minimizing y i s  
not unique unless B i s  nonsingular. 

It may be 

2Use has been made of the f a c t  t h a t  [A( t )x ( t ) ]*  = x " ( t ) A * t ( t ) .  



11. MULTIVARIATE WIDE-SENSE MARKDV PROCESSES 

The l i n e a r  minimum mean-square e r r o r  estimator,  sometimes ca l led  a wide- 
sense conditional expectation, w i l l  be denoted by e .  
square estimate of ZEH, based on x( t ,), x( t2), . . . ,x( tn-l), one may write 

For the minimum mean- 

n-1 
2 

Akx(tk) 1 ] i s  minimized. A c with the matrices Ak so chosen t h a t  E [ I z  - 
1 

spec ia l  case i s  obtained by taking t, < t, < . . . . < tn and z = x ( t n )  . 
the  process x ( t )  i s  sa id  t o  be wide-sense Markov i f  any such s e t  of t ' s  
yields  

Then 

Ak = 0 f o r  k=1,2,..,n-2; t h i s  i s  equivalent t o  

f o r  a l l  tl < t2 < . . . . < tn. 
a continuous cor re la t ion  P ( s , t ) ,  and A i s  a subset of the r e a l  l i n e  such t h a t  

Moreover, it may be ve r i f i ed  t h a t  i f  x ( t )  has 

sup s 
SEA 

= s* < t, 

s[x( t )  Ix( s) ,SEA] = t [ x ( t )  Ix( s*) 1 (2-4 j 

i s  an  equivalent de f in i t i on  f o r  the wide-sense Markov property. 

h 

W e  remark t h a t  E i s  the l i nea r  minimum-mean-square-error estimate of 
x ( t ) ,  given the random process over a subset A of the real l i n e .  
t h i s  estimate i s  extremely d i f f i c u l t  t o  compute. However, the property 
(14)  sets t h i s  estimate equal t o  $ [ x ( t )  Ix(s*)], which i s  simply 

I n  general, 

According t o  (lo), (15) i s  t rue  i f  R ( t , s * )  s a t i s f i e s  
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3A covariance matrix P ( t , t )  i s  s ingular  if and on ly  if the components 
Of the vector x ( t )  a r e  dependent i n  the sense t h a t  there  e x i s t s  a Set Of 

p lex)  sca la rs  ak such tha t  E & akxk(t)  l 2  = 0 and not all ak = 0. 
proved by noting t h a t  the determinant of the matrix P ( t , t )  i s  a G r a m  deter-  
minant. 

This  i s  

E(  [x( t) -R( t, S*) X( s*) ]x*( s*) ) P( t, s*) -R( t, S*) P( S*, 8*) =: 0. 

Suppose first tha t  P(s*,s*) is  inver t ib le .  Then it i s  e a s i l y  ve r i f i ed  that 
c 

R ( t , s * )  = P(t,s*) [P(s*,s*) 1-1 

s a t i s f i e s  (16). 

If P(s*,s*) is  ~ i n g u l a r , ~  (17) makes no sense, but  it i s  s t i l l  possible 
For s impl ic i ty  of notat ion we omit t o  f ind  an  R(t,s*) which satisfies (15). 

the  a s t e r i s k  i n  t h i s  discussion and speak of the determination of R ( t , s ) .  
kt S,&, ...,h, be the  e i g e n n l u e s  of  P(s,s), and take D as the diagonal 
matrix whose en t r i e s  a re  d i j  = hi613 (note that s i s  suppressed i n  t h i s  
discussion) .  
(ciL,ci2, ..., tin) correspond t o  the eigenvalues; we may take these t o  be 
normalized by c I C  l 2  = 1. The uni ta ry  matrix C is then formed from the 

elements c i  j. 

Since P(s,s) is  Hermitian, n orthogonal eigenvectors 

j i j  

Final ly ,  l e t  E be the diagonal matrix with eii = hi i f  hi f 0, and eii 
= 1 if h i  = 0. Then 

R( t , s )  = P( t , s )  [C*E'lC], (18 1 

which, it may be verif ied,  satisfies (16) as shown i n  [4]. 
t h a t  i f  P(s,s) is  inver t ib le ,  E'l = D'l, so t h a t  C*E"C = [P(s , s ) ] ' l  and 
(18) coincides wi th  (17). 

It i s  a l so  c l e a r  

If x ( t )  i s  wide-sense Markov, the mult ivar ia te  predict ion problem i s  a l -  
ready solved by (14)  and (15). 
mum-mean-square) l i n e a r  predict ion of x(t+Cx) based on the present and past  of 
x ( t )  i s  

For a predict ion in t e rva l  a, the  best (mini- 

A 
k[x(t+cu) Ix(s) ,s  < t ]  = E[x(t+C$ I x ( t ) ]  = R(t+C%,t)x(t) (19)  
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While the wide-sense Markov property i s  usual ly  not d i r e c t l y  ver i f iab le ,  
there  i s  a simple c r i t e r i o n  which iden t i f i e s  such processes. 
result of 

This  t e s t  is a a 
*. 

Theorem 2: x ( t )  i s  wide-sense Markov i f  and only i f ,  f o r  a l l  s < - -  t < u, 
6 

R(u,s) = R(u, t )R(t ,s) .  (20 1 

Proof: 
an argument iden t i ca l  with the one leading t o  (16), we have 

I n  (l3), make the  ident i f ica t ion  tn = u, tn_l = t, and tn,2 = s. By 

When (21) i s  post-multiplled by C*E'lC and i t s  terms rearranged, (20) re- 
sults. 

To prove the "if" part of the theorem, we show first t h a t  

Indeed, 
k=1,2,. 

(22) i s  equivalent t o  P(tn,tk)-R(tn,tn,l)P(tn,l,tk) = 0, 
. ,n-l,  from (10). But orthogonality i s  implied by 

which follows from (20) upon taking t k  = s, tn,l = t, and tn = u. 

Equation (22) having been shown, w e  need only make the fur ther  remark that 

i r respect ive of the wide-sense Markov property. Together, (22) and (24)  
imply (13 ) 

A s  a special izat ion of the  foregoing, we discuss wide-sense Markov proc- 
esses which are also s ta t ionary  i n  the wide sense. These have found some ap- 
pl ica t ions  i n  the physics l i t e r a tu re ,  where the emphasis is on gaussian proc- 
esses (which are then also s ta t ionary and Markovian i n  the usual sense) [ 6 ] .  



We s h a l l  define a multivariate wide-sense s ta t ionary  process as being charac- 
t e r i zed  by the re la t ion  

..* P ( s , t )  = P(s- t )  , (25 1 

with the addi t ional  proviso t h a t  P(0) is nonsingular. 
ni t ion,  R will be seen t o  assume the form 

From i t s  general de f i -  

When a process is  both wide-sense Markov and s ta t ionary,  R s a t i s f i e s  both 
(26) and (20),  so t h a t  

R( s+t) = R( s ) R ( t )  . (27 1 

I n  f ac t ,  the form can now be specified precisely.  We have 

Theorem 
R ( t )  i s  

R( t) = 

where C 
par t s .  

Remark: 

Proof: - 

2: Let x ( t )  be wide-sense s ta t ionary  and wide-sense Markov. If 
continuous a t  t = 0 (from the r i g h t ) ,  

C t  e t > O ,  

i s  a constant matrix a l l  of whose eigenvalues have negative real 
Conversely, i f  R ( t )  s a t i s f i e s  (28),  x ( t )  i s  wide-sense Markov. 

For t < 0, R ( t )  = e C * l t l .  

That (27) implies (28) follows f o r  matrices j u s t  as it does f o r  
functions; the uniqueness of (28) follows from the r igh t  continuity of R ( t )  
a t  the origin.' 
eigenvalues of C have negative real par ts ,  see [ 5 ] ,  Theorem 3 .  To prove the 
converse part of the theorem, one simply notes t h a t  the R ( t )  given by (28) 
s a t i s f i e s  (27), so t h a t  x ( t )  i s  indeed wide-sense Markov. 

For a complete proof, including a ve r i f i ca t ion  t h a t  the 

L 

I n  making an optimum estimate of quant i t ies  such as 
co 

z( . t )  = [ W( t , s ) x (  s)ds 
-w 

41t i s  known t h a t  any solutions of (27) not continuous everywhere must be 
unbounded i n  every in te rva l .  



. 
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with x ( t )  wide-sense Markov, additional d i f f i c u l t i e s  appear. 
and in tegra t ion  can be interchanged, 

If, however, f 

so t h a t  it may be possible t o  calculate the optimum estimate qui te  eas i ly .  

The following theorem gives conditions under which (30) i s  val id:  

h 
Theorem 4: 
each t, 

The interchange of E and integration, ( 3 0 ) ,  i s  va l id  i f ,  f o r  

J 7 l w (  t, SI x( s> lids < 
-03 

The proof of Theorem 4 requires a working knowledge of measure theory 
and functional analysis,  and appears i n  [ 5 ] .  

Using ( S ) ,  it i s  possible to obtain an e x p l i c i t  expression f o r  the 
optimum estimate of z ( t ) ,  based on the e n t i r e  past of x ( t ) .  
the r i g h t  side of ( 3 0 )  i s  s p l i t  into the in te rva ls  -UJ t o  t and t 
the f i rs t  interval ,  E[x(s )  I x ( T ) , - a ,  < T <_ t ]  = x ( s ) ,  and i n  the second, (14) 
appl ies .  Then 

The in t eg ra l  on 
t o  00; i n  

f i  

Optimum f i n i t e  memory f i l t e r s  a re  a l so  of i n t e re s t .  I n  terms of the s e t  A 
introduced earlier [see (14)  3, a f i n i t e  memory f i l t e r  with memory T .corre- 
sponds t o  an in t e rva l  A running from t - T  t o  t. 
f i l t e rs ,  it i s  necessary t o  use the following property of wide-sense Markov 
processes: i f  in f  s = s* > t ,  then 

To operate with f i n i t e  memory 

- 
s EA 

* Thus, the bes t  estimate of x ( t )  for  any t i m e  more remote than the length of 
the f i l t e r  memory i s  based on x(s* ) ,  where s+ is  the earliest  t i m e  i n  the 
f i l t e r  memory. 



That ( 3 3 )  i s  t rue  i s  a consequence of 

. 

Theorem 5 :  - If x ( t )  i s  wide-sense Markov, 

s < t < u .  (34 1 R( S,U) = R( s , t )R(t ,u)  - -  

Moreover, x ( t )  i s  wide-sense Markov if and only if x( - t )  i s  wide-sense Markov. 

Proof: 
i n  the la t ter  case, [P(t ,  t )  1- l  i s  t o  be interpreted as C*E”C (where C and E 
a re  understood t o  depend on the  parameter t ) .  Suppose x ( t )  t o  be wide-sense 
Markov. Then (20) gives 

For convenience, we write [ P ( t , t )  1-l even i f  P ( t , t )  has no inverse; - 

(35 1 s < t < u .  - -  R*(u,S) = R*(u,t)R*(t,s) 

But P ( s , t )  = P ( t , s ) ,  so t h a t  R * ( s , t )  = [P(t , t ) ] - ’P( t ,s) .  
sult t o  (35), premultiply both s ides  by P(s,s), and postmultiply by 
[P(u,u)]‘~.  

Now apply t h i s  re- 

The final outcome of these operations i s  (34). 

To prove the second asser t ion  of the theorem, l e t  z(t)  = x ( - t ) ,  and de- 
note the normalJzed covariance matrix of %(t) by g(s , t ) .  
ver i f ied  t h a t  R ( s , t )  = R ( - s , - t ) .  

It i s  then e a s i l y  
Now choose -u 5 -t < - -s, yielding 

from (34).  If (36) i s  rewri t ten i n  terms of R, we see tha t  
R(u,s) = z ( u , t ) % ( t , s )  with s <_ t 5 u (which follows from -u <_ -t < - -SI. 
“x(t) i s  wide-sense Markov. 

v 

Thus 

The “ i f ”  part of the theorem follows immediately. 
sense Markov, so i s  (by what we have j u s t  proved) n( -t) = x ( t ) .  

For, i f  k ( t )  i s  wide- 

With the a id  of  Theorem 5 ,  it i s  easy t o  ve r i fy  (33).  Let -A be the set  
containing -t i f  and  only i f  tcA. We thus have, taking ( - s ) *  = sup(-s)<-t, - 

-sE-A 

E[;( -t) Ix( -s) ,( - s ) E - A I  = E[$( -t) Ix( ( -s) *) 3 . (37) 



With the change from x" t o  x, (37) becomes 

0 

', We complete the calculat ion by showing t h a t  - (  -s)* = s* > t. Indeed, 

- ( - a ) *  = -sup(-s) - > t, and -sup(-s) 3: i n f  s = s* . 
SEA S€A seA 

111. APPLICATIONS 

With the theore t ica l  background t h a t  has been developed, it i s  possible 
t o  solve predict ion and estimation problems not amenable t o  the usual tech- 
niques. 
i n  closed form without necessarily exhausting the power of wide-sense Markov 
theory. 

Solutions t o  several  apparently d i f f i c u l t  problems w i l l  be exhibited 

Consider again the problem of estimating a z ( t )  defined by ( 2 9 ) ,  W(t,s) 
representing some desired operation on x ( t ) .  
avai lable  over a f i n i t e  segment of the past ,  so that  the optimum f i n i t e  
memory f i l t e r  i s  sought. 
in tegra t ion  a re  interchanged, and the in tegra l  i s  s p l i t  i n to  the three in t e r -  
vals do t o  t -T ,  t - T  t o  t, and t t o  00. 

f i rs t  integral ,  and (14) t o  the th i rd .  I n  the second in tegra l ,  advantage i s  
taken of the f a c t  t h a t  $[x(s) Ix(T),t-T < - -  T < t ]  = x ( s )  whenever t - T  < - -  s < t. 
The r e s u l t  of the computation i s  therefore 

It i s  assumed t h a t  x ( t )  is  

To compute ^E [z( t ) Ix( 7) , t - T  < - -  T < t ] , E  ̂ and the  

Equation ( 3 3 )  may be applied t o  the 

W ( t , s ) R (  S , t -T)dS X ( t - T )  I A 
E[z( t )  I x ( T ) , ~ - T  - -  < T < t ]  

( 3 9 )  

a 

The f i n i t e  memory f i l t e r  which operates on x ( t )  t o  yield 
$[z(t) Ix(T),t-T < - -  T < t ]  can be described by a weighting function G(t ,s )  such 
t h a t  

t 
A 
E[z(t)  Ix(T),t-T - -  < T < t ]  = G(t ,s)x(s)ds  . a 

t - T  
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It i s  convenient t o  write G ( t , s )  i n  terms of the 6-function and the u n i t  s t ep  
function h ( t ) ;  the latter i s  zero f o r  negative argument and uni ty  f o r  positive 
argument. The 0 Both s t ep  and 6-functions a re  regarded as sca la r  mult ipl iers .  
equation f o r  G ( t , s )  reads: 6. 

If W ( t , s )  i s  zero f o r  s < - t, it i s  ca l led  wholly unrealizable.  Then only 
the f inal  term o f  ( 3 9 )  o r  (41)  remains, and (independently of T )  the estimate 
of E [ z ( t )  I x ( T ) ,  t - T  <_ 7 <_ t ]  i s  obtained by applying n2 time-varying multi-  
p l i e r s  and n summers t o  x ( t ) .  
i . e . ,  W ( t , s )  = W ( t - s ) ,  and x ( t )  i s  wide-sense s ta t ionary  (as w e l l  as wide- 
sense Markov), the n2 mult ipl iers  have constant gains.? 

j t h  component o f  E^[z(t)  I.(.), t - T  < - -  T < t ]  i s  $ gjkxk(t) ,  where gJk i s  the j k  

component of the constant matrix 

n 

I f ,  i n  additon, W ( t , s )  i s  t i m e  invar iant ,  

I n  par t icu lar ,  the  
n 

0 
-CW 

G = [ W(u)e du . 
-00 

A par t icu lar  example of a wholly nonrealizable W i s  tha t  associated w i t h  
Subst i tut ing t h i s  prediction over an in te rva l  Q:. 

value of W i n  ( 4 1 )  (only the last term need be considered) gives a r e s u l t  
ident ica l  w i t h  the  earlier computation (19) .  

There, W ( s , t )  = G ( t + a r - s ) I .  

The general results ( 3 9 )  and (41)  lend themselves a l so  t o  other  appl i -  
cations.  Assume a sampled data system, i n  which only one sample i s  ava i l -  
able t o  the f i l t e r  memory. If the leading edge of the sample i s  a t  time 
sjc, and the t r a i l i n g  edge a t  time s*, (41)  becomes 

I s* 

G(t,s) = W(t,u)R(u,su)du 6(s,-s) + W(t,s) [A(s-s+)-h(s-s*) j 

(43 ) 

+ r*mW( t ,u) R( u, s*) ds 6( s*-s) . 1 

. 

5Apart from variat ions i n  the s igns  of the mul t ip l ie r  gains, n operational 0 
amplifiers with adjustable input r e s i s t o r s  suff ice  t o  mechanize the optimum 
s ys t e m .  
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Special cases 81% readi ly  deduced from (43).  
only the t r a i l i n g  edge of a sample ( the  t r a i l i n g  edge of the last  sample i f  
there  are more than one) i s  employed i f  W(t,s) i s  wholly unrealizable;  t h i s  
t r a i l i n g  edge i s  passed through a s e t  of time-varying amplifiers and summed. 
Another spec ia l iza t ion  r e su l t s  i f  the sample i s  instantaneous (zero width).  
Then s+ = s*, the second term o f  (43) disappears, and there remains 

It i s  c lear ,  f o r  instance, t ha t  

G(t,s) = p-w W(t,u)R(u,s*)du 6(s-s*) , 1 
which i s  t o  say, 

2 [z( t )  IX(s*)] = ~wwW(t,u)13(u,s*)du x(s*) . 1 

(44 1 

(45) 

So far, there has been no indicat ion when wide-sense Markov processes 
In  f a c t ,  such processes do const i tute  the output of might be encountered. 

a t  least one important c l a s s  of l inear  systems. Considered will be systems 
described by l i n e a r  time -varying d i f f e ren t i a l  equations w i t h  white -noise 
forcing.6 
ing the predict ion problem completely f o r  outputs of these systems. 

For these systems, R(s , t )  w i l l  be computed exp l i c i t l y ,  thus solv- 

For a f i r s t -o rde r  equation, 

k + f ( t ) x  = h ( t ) n ( t )  x(0) = 0 , (46) 

i n  which a l l  quant i t ies  are r e a l  scalars  (matrices with only one en t ry) ,  and 
n ( t )  i s  a ( r e a l )  random process with covariance E [ n ( s ) n ( t ) ]  = 6 ( s - t ) .  

Evidently, x ( t )  i s  the output of a time-varying system whose input con- 
sists of white noise modulated by h ( t ) .  
t r a i n  i f  the system receives i t s  input through a (possibly non-periodic) 
sampling switch. 
strength w i t h  t i m e .  

For instance, h ( t )  becomes a pulse 

More generally, h ( t )  r e f l e c t s  t he  var ia t ion  i n  noise 

e 

I f  one takes 



the  solut ion of (46) becomes 

since H(s,u) = H(s, t )H(t ,u) .  
=P(s , t )  [ P ( t , t )  3 - 1 .  

t h a t  we have 

It i s  now easy t o  compute R ( s , t )  
I n  t h i s  case, the inverse’ becomes the reciprocal,  so 

An easy computation yields  

which we rewrite as 

From (51) and (49) we deduce tha t  

S j’ H( s,u)H(0,u)h2(u)du 

J’ tH( t u ) H (  0, u)h2 (u)du 

0 
R ( s , t )  = 

0 

I‘ 

whenever s <_ t .  
now use (5O), and note tha t  the in t eg ra l  port ion of t h i s  equation remains 
unchanged i f  we s e t  s = t. Therefore, the in t eg ra l  term cancels when w e  
compute R ( s , t ) .  

The expression f o r  R ( s , t )  with s > - t i s  even simpler. We 

Using the r e l a t i o n  H(u,v) = l/H(v,u), w e  have f o r  our r e s u l t  

The Markov property i s  now e a s i l y  ver i f ied  by subs t i tu t ing  ( 5 3 )  in to  one side 
Of ( 2 0 )  and using the i d e n t i t y  H(s,u) = H(s , t )H( t ,u) .  
be accomplished through use of ( 5 2 ) ,  i f  desired.  

* 

0 Verif icat ion may a l so  



It i s  of course possible t h a t  the denominator of ( 5 2 )  i s  zero; t h i s  
occurs only when h ( u )  = 0 i n  the in te rva l  zero t o  t. I n  such an event, we 
take R ( s , t )  = 0, which a l so  makes the estimate of any z ( t ) ,  based on x ( T ) ,  
0 < r < t, be zero. 
i n t e rva i .  

This i s  t o  be expected, since x ( t )  = 0 over the same - -  

Since R ( s , t )  may be d i r e c t l y  computed from ( 5 2 )  o r  ( 5 3 ) ,  any of the 
formulas of t h i s  sect ion may be applied. For instance, the optimum predic- 
t i o n  over in t e rva l  Cy i s  

which shows t h a t  predict ion may be accomplished by a time-varying mult ipl ier .  
When W( t, s ) i s  wholly nonrealizable, other  optimizations are comparably s i m -  
p le  . 7 

The above calculat ions may be extended t o  matrix d i f f e r e n t i a l  equations, 
which are wr i t ten  

x = A ( t ) x  + M(t )n ( t )  x(0)  = 0 , ( 5 5 )  

a l l  symbols representing matrices, which may be complex. 
now characterized by E [ n ( s ) n * ( t ) ]  = G ( t - s ) I ,  where I i s  the i d e n t i t y  matrix. 

The "white noise" i s  

The solut ions t o  optimization problems involving the x ( t )  given by ( 5 5 )  
are formulated i n  terms of the fundamental matrix, X ( t ) ,  which provides the 
so lu t ion  t o  

X = A ( t ) X ,  x ( 0 )  = 0 . (56 1 

That a knowledge of X ( t )  is  required implies no loss i n  generali ty,  since 
X ( t )  i s  required even t o  compute P ( s , t ) ,  o r  t o  solve ( 5 5 )  with non-stochastic 
f o r c  ing . 

The calculat ions are  s imilar  t o  those made f o r  the f i r s t -o rde r  equation, 
except t h a t  matrices f a i l  t o  commute, and reciprocals  of singular matrices 
cannot be ident i f ied  with inverses. It remains t rue,  however, t h a t  there i s  
an H ( t , s )  such t h a t  

7For a more complete discussion of the optimum estimator problem as applied 
t o  (46) ,  see [TI. 
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t 

x! t) = H(t,u)M(u)n(u)du 
0 

with 

a nonsingular matrix having the property H ( s , t )  = [H(t,s)]". 

Proceeding as before, 

min( s , t) 
P(s , t )  = H(s,u)M(u)M*(u)H*(t,u)du . 

0 

(57 1 

For ease o f  computation, it i s  sometimes advantageous t o  write (58) as 

[ X( u) ] - %( u) M*( u) [ X*( u) 1' ( 5 9 )  
min( s, t) 

If the in tegra l  

t 
v( t) = [x( U) ]-lM( U) M*( U) [X*( u) ]-ldu 

0 

i s  inver t ib le ,  w e  a l so  have 

[ P ( t , t )  I-' = Ex*(t) I - l [ V ( t )  ] - l Ix( t )  I" , 

so t h a t  

R ( s , t )  = H ( s , t )  s > t  - 

L '  

t' 
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Either  (62) or (63) may be used t o  ve r i fy  t h a t  x ( t )  i s  wide-sense Markov. 
This  i s  e a s i l y  accomplished by subs t i tu t ion  of (62) o r  (63) in to  (20) .  

It may be shown (see [ 5 ] )  t h a t  (60) i s  nonsingular i f  M(u) i s  nonsing- 

i' 
u l a r  i n  some neighborhood of the origin,  so t h a t  a simple suff ic iency condi- 

are some appl icat ions i n  which (60 )  is c l e a r l y  singular.  For instance, we 
may choose M(u) t o  possessonly one nonzero element, corresponding t o  w h i t e  
noise imposed on only one of the vector components. One such form of M(u) 
leads t o  the sca l a r  equation. 

I t i o n  checks the app l i cab i l i t y  of the above formulas. On the other  hand, there  f 
d x  n d"-l 

%(t) - + a (t,) 2 + ' * e +  ao( t )x  = n ( t )  , 
d t n - l  

dtn n-1 

which is, of course, covered by our theory. 

The case of a singular V ( t )  again requires us to  f ind  eigenvalues and 
eigenvectors. 
have the same meaning as i n  Section 11, except t h a t  they apply t o  the matrix 
V ( t  1. 

Since V ( t )  i s  Hermitian, we may define Ct, Dt, and Et t o  

It i s  then possible t o  show (see [5 1) t h a t  

The R ( s , t )  of  t h i s  form a lso  s a t i s f i e s  (20), so tha t  x ( t )  i s  wide-sense 
Markov i n  any case (see [ 5 ]  for proof).  If V(t)  i s  nonsingular, (64) 
reduces t o  (62) .  

Since the determination o f  R ( s , t )  shows x ( t )  t o  be wide-sense Markov, 
subs t i tu t ion  into any of the e a r l i e r  optimization formulas i s  appropriate. 
For an i n f i n i t e  memory f i l t e r ,  and/or a z ( t )  generated by a wholly unreal iz-  
able weighting function, only the simple expression (62) appears i n  the 
r e s u l t .  The predict ion formula, for  example, i s  precisely (54) .  
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